3.4.37 \(\int \frac {x^3 (a+b \log (c x))}{d+\frac {e}{x}} \, dx\) [337]

Optimal. Leaf size=170 \[ -\frac {a e^3 x}{d^4}+\frac {b e^3 x}{d^4}-\frac {b e^2 x^2}{4 d^3}+\frac {b e x^3}{9 d^2}-\frac {b x^4}{16 d}-\frac {b e^3 x \log (c x)}{d^4}+\frac {e^2 x^2 (a+b \log (c x))}{2 d^3}-\frac {e x^3 (a+b \log (c x))}{3 d^2}+\frac {x^4 (a+b \log (c x))}{4 d}+\frac {e^4 (a+b \log (c x)) \log \left (1+\frac {d x}{e}\right )}{d^5}+\frac {b e^4 \text {Li}_2\left (-\frac {d x}{e}\right )}{d^5} \]

[Out]

-a*e^3*x/d^4+b*e^3*x/d^4-1/4*b*e^2*x^2/d^3+1/9*b*e*x^3/d^2-1/16*b*x^4/d-b*e^3*x*ln(c*x)/d^4+1/2*e^2*x^2*(a+b*l
n(c*x))/d^3-1/3*e*x^3*(a+b*ln(c*x))/d^2+1/4*x^4*(a+b*ln(c*x))/d+e^4*(a+b*ln(c*x))*ln(1+d*x/e)/d^5+b*e^4*polylo
g(2,-d*x/e)/d^5

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {269, 45, 2393, 2332, 2341, 2354, 2438} \begin {gather*} \frac {b e^4 \text {PolyLog}\left (2,-\frac {d x}{e}\right )}{d^5}+\frac {e^4 \log \left (\frac {d x}{e}+1\right ) (a+b \log (c x))}{d^5}+\frac {e^2 x^2 (a+b \log (c x))}{2 d^3}-\frac {e x^3 (a+b \log (c x))}{3 d^2}+\frac {x^4 (a+b \log (c x))}{4 d}-\frac {a e^3 x}{d^4}-\frac {b e^3 x \log (c x)}{d^4}+\frac {b e^3 x}{d^4}-\frac {b e^2 x^2}{4 d^3}+\frac {b e x^3}{9 d^2}-\frac {b x^4}{16 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*Log[c*x]))/(d + e/x),x]

[Out]

-((a*e^3*x)/d^4) + (b*e^3*x)/d^4 - (b*e^2*x^2)/(4*d^3) + (b*e*x^3)/(9*d^2) - (b*x^4)/(16*d) - (b*e^3*x*Log[c*x
])/d^4 + (e^2*x^2*(a + b*Log[c*x]))/(2*d^3) - (e*x^3*(a + b*Log[c*x]))/(3*d^2) + (x^4*(a + b*Log[c*x]))/(4*d)
+ (e^4*(a + b*Log[c*x])*Log[1 + (d*x)/e])/d^5 + (b*e^4*PolyLog[2, -((d*x)/e)])/d^5

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 269

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]

Rule 2332

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2354

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Dist[b*n*(p/e), Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, n}, x] && IGtQ[p, 0]

Rule 2393

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin {align*} \int \frac {x^3 (a+b \log (c x))}{d+\frac {e}{x}} \, dx &=\int \left (-\frac {e^3 (a+b \log (c x))}{d^4}+\frac {e^2 x (a+b \log (c x))}{d^3}-\frac {e x^2 (a+b \log (c x))}{d^2}+\frac {x^3 (a+b \log (c x))}{d}+\frac {e^4 (a+b \log (c x))}{d^4 (e+d x)}\right ) \, dx\\ &=\frac {\int x^3 (a+b \log (c x)) \, dx}{d}-\frac {e \int x^2 (a+b \log (c x)) \, dx}{d^2}+\frac {e^2 \int x (a+b \log (c x)) \, dx}{d^3}-\frac {e^3 \int (a+b \log (c x)) \, dx}{d^4}+\frac {e^4 \int \frac {a+b \log (c x)}{e+d x} \, dx}{d^4}\\ &=-\frac {a e^3 x}{d^4}-\frac {b e^2 x^2}{4 d^3}+\frac {b e x^3}{9 d^2}-\frac {b x^4}{16 d}+\frac {e^2 x^2 (a+b \log (c x))}{2 d^3}-\frac {e x^3 (a+b \log (c x))}{3 d^2}+\frac {x^4 (a+b \log (c x))}{4 d}+\frac {e^4 (a+b \log (c x)) \log \left (1+\frac {d x}{e}\right )}{d^5}-\frac {\left (b e^3\right ) \int \log (c x) \, dx}{d^4}-\frac {\left (b e^4\right ) \int \frac {\log \left (1+\frac {d x}{e}\right )}{x} \, dx}{d^5}\\ &=-\frac {a e^3 x}{d^4}+\frac {b e^3 x}{d^4}-\frac {b e^2 x^2}{4 d^3}+\frac {b e x^3}{9 d^2}-\frac {b x^4}{16 d}-\frac {b e^3 x \log (c x)}{d^4}+\frac {e^2 x^2 (a+b \log (c x))}{2 d^3}-\frac {e x^3 (a+b \log (c x))}{3 d^2}+\frac {x^4 (a+b \log (c x))}{4 d}+\frac {e^4 (a+b \log (c x)) \log \left (1+\frac {d x}{e}\right )}{d^5}+\frac {b e^4 \text {Li}_2\left (-\frac {d x}{e}\right )}{d^5}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 156, normalized size = 0.92 \begin {gather*} \frac {-144 a d e^3 x+144 b d e^3 x-36 b d^2 e^2 x^2+16 b d^3 e x^3-9 b d^4 x^4-144 b d e^3 x \log (c x)+72 d^2 e^2 x^2 (a+b \log (c x))-48 d^3 e x^3 (a+b \log (c x))+36 d^4 x^4 (a+b \log (c x))+144 e^4 (a+b \log (c x)) \log \left (1+\frac {d x}{e}\right )+144 b e^4 \text {Li}_2\left (-\frac {d x}{e}\right )}{144 d^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(a + b*Log[c*x]))/(d + e/x),x]

[Out]

(-144*a*d*e^3*x + 144*b*d*e^3*x - 36*b*d^2*e^2*x^2 + 16*b*d^3*e*x^3 - 9*b*d^4*x^4 - 144*b*d*e^3*x*Log[c*x] + 7
2*d^2*e^2*x^2*(a + b*Log[c*x]) - 48*d^3*e*x^3*(a + b*Log[c*x]) + 36*d^4*x^4*(a + b*Log[c*x]) + 144*e^4*(a + b*
Log[c*x])*Log[1 + (d*x)/e] + 144*b*e^4*PolyLog[2, -((d*x)/e)])/(144*d^5)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 258, normalized size = 1.52

method result size
risch \(\frac {a \,x^{4}}{4 d}-\frac {a e \,x^{3}}{3 d^{2}}+\frac {a \,x^{2} e^{2}}{2 d^{3}}-\frac {a \,e^{3} x}{d^{4}}+\frac {a \,e^{4} \ln \left (d x +e \right )}{d^{5}}+\frac {b \,x^{4} \ln \left (c x \right )}{4 d}-\frac {b \,x^{4}}{16 d}-\frac {b e \,x^{3} \ln \left (c x \right )}{3 d^{2}}+\frac {b e \,x^{3}}{9 d^{2}}+\frac {b \,e^{2} x^{2} \ln \left (c x \right )}{2 d^{3}}-\frac {b \,e^{2} x^{2}}{4 d^{3}}-\frac {b \,e^{3} x \ln \left (c x \right )}{d^{4}}+\frac {b \,e^{3} x}{d^{4}}+\frac {b \,e^{4} \dilog \left (\frac {c d x +c e}{e c}\right )}{d^{5}}+\frac {b \,e^{4} \ln \left (c x \right ) \ln \left (\frac {c d x +c e}{e c}\right )}{d^{5}}\) \(206\)
derivativedivides \(\frac {-\frac {a \,c^{4} e^{3} x}{d^{4}}+\frac {a \,c^{4} e^{2} x^{2}}{2 d^{3}}-\frac {a e \,c^{4} x^{3}}{3 d^{2}}+\frac {a \,c^{4} x^{4}}{4 d}+\frac {a \,c^{4} e^{4} \ln \left (c d x +c e \right )}{d^{5}}+\frac {b \,c^{4} x^{4} \ln \left (c x \right )}{4 d}-\frac {b \,c^{4} x^{4}}{16 d}-\frac {b \,c^{4} e \,x^{3} \ln \left (c x \right )}{3 d^{2}}+\frac {b e \,c^{4} x^{3}}{9 d^{2}}+\frac {b \,c^{4} e^{2} x^{2} \ln \left (c x \right )}{2 d^{3}}-\frac {b \,c^{4} e^{2} x^{2}}{4 d^{3}}-\frac {b \,c^{4} e^{3} x \ln \left (c x \right )}{d^{4}}+\frac {b \,c^{4} e^{3} x}{d^{4}}+\frac {b \,c^{4} e^{4} \dilog \left (\frac {c d x +c e}{e c}\right )}{d^{5}}+\frac {b \,c^{4} e^{4} \ln \left (c x \right ) \ln \left (\frac {c d x +c e}{e c}\right )}{d^{5}}}{c^{4}}\) \(258\)
default \(\frac {-\frac {a \,c^{4} e^{3} x}{d^{4}}+\frac {a \,c^{4} e^{2} x^{2}}{2 d^{3}}-\frac {a e \,c^{4} x^{3}}{3 d^{2}}+\frac {a \,c^{4} x^{4}}{4 d}+\frac {a \,c^{4} e^{4} \ln \left (c d x +c e \right )}{d^{5}}+\frac {b \,c^{4} x^{4} \ln \left (c x \right )}{4 d}-\frac {b \,c^{4} x^{4}}{16 d}-\frac {b \,c^{4} e \,x^{3} \ln \left (c x \right )}{3 d^{2}}+\frac {b e \,c^{4} x^{3}}{9 d^{2}}+\frac {b \,c^{4} e^{2} x^{2} \ln \left (c x \right )}{2 d^{3}}-\frac {b \,c^{4} e^{2} x^{2}}{4 d^{3}}-\frac {b \,c^{4} e^{3} x \ln \left (c x \right )}{d^{4}}+\frac {b \,c^{4} e^{3} x}{d^{4}}+\frac {b \,c^{4} e^{4} \dilog \left (\frac {c d x +c e}{e c}\right )}{d^{5}}+\frac {b \,c^{4} e^{4} \ln \left (c x \right ) \ln \left (\frac {c d x +c e}{e c}\right )}{d^{5}}}{c^{4}}\) \(258\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*ln(c*x))/(d+e/x),x,method=_RETURNVERBOSE)

[Out]

1/c^4*(-a/d^4*c^4*e^3*x+1/2*a/d^3*c^4*e^2*x^2-1/3*a/d^2*e*c^4*x^3+1/4*a/d*c^4*x^4+a*c^4*e^4/d^5*ln(c*d*x+c*e)+
1/4*b/d*c^4*x^4*ln(c*x)-1/16*b/d*c^4*x^4-1/3*b*c^4/d^2*e*x^3*ln(c*x)+1/9*b/d^2*e*c^4*x^3+1/2*b*c^4/d^3*e^2*x^2
*ln(c*x)-1/4*b/d^3*c^4*e^2*x^2-b*c^4*e^3/d^4*x*ln(c*x)+b/d^4*c^4*e^3*x+b*c^4*e^4/d^5*dilog((c*d*x+c*e)/e/c)+b*
c^4*e^4/d^5*ln(c*x)*ln((c*d*x+c*e)/e/c))

________________________________________________________________________________________

Maxima [A]
time = 0.32, size = 184, normalized size = 1.08 \begin {gather*} \frac {{\left (\log \left (d x e^{\left (-1\right )} + 1\right ) \log \left (x\right ) + {\rm Li}_2\left (-d x e^{\left (-1\right )}\right )\right )} b e^{4}}{d^{5}} + \frac {{\left (b \log \left (c\right ) + a\right )} e^{4} \log \left (d x + e\right )}{d^{5}} + \frac {9 \, {\left (4 \, a d^{3} + {\left (4 \, d^{3} \log \left (c\right ) - d^{3}\right )} b\right )} x^{4} - 16 \, {\left (3 \, a d^{2} + {\left (3 \, d^{2} \log \left (c\right ) - d^{2}\right )} b\right )} x^{3} e + 36 \, {\left ({\left (2 \, d \log \left (c\right ) - d\right )} b + 2 \, a d\right )} x^{2} e^{2} - 144 \, {\left (b {\left (\log \left (c\right ) - 1\right )} + a\right )} x e^{3} + 12 \, {\left (3 \, b d^{3} x^{4} - 4 \, b d^{2} x^{3} e + 6 \, b d x^{2} e^{2} - 12 \, b x e^{3}\right )} \log \left (x\right )}{144 \, d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*x))/(d+e/x),x, algorithm="maxima")

[Out]

(log(d*x*e^(-1) + 1)*log(x) + dilog(-d*x*e^(-1)))*b*e^4/d^5 + (b*log(c) + a)*e^4*log(d*x + e)/d^5 + 1/144*(9*(
4*a*d^3 + (4*d^3*log(c) - d^3)*b)*x^4 - 16*(3*a*d^2 + (3*d^2*log(c) - d^2)*b)*x^3*e + 36*((2*d*log(c) - d)*b +
 2*a*d)*x^2*e^2 - 144*(b*(log(c) - 1) + a)*x*e^3 + 12*(3*b*d^3*x^4 - 4*b*d^2*x^3*e + 6*b*d*x^2*e^2 - 12*b*x*e^
3)*log(x))/d^4

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*x))/(d+e/x),x, algorithm="fricas")

[Out]

integral((b*x^4*log(c*x) + a*x^4)/(d*x + e), x)

________________________________________________________________________________________

Sympy [A]
time = 110.95, size = 299, normalized size = 1.76 \begin {gather*} \frac {a x^{4}}{4 d} - \frac {a e x^{3}}{3 d^{2}} + \frac {a e^{2} x^{2}}{2 d^{3}} + \frac {a e^{4} \left (\begin {cases} \frac {x}{e} & \text {for}\: d = 0 \\\frac {\log {\left (d x + e \right )}}{d} & \text {otherwise} \end {cases}\right )}{d^{4}} - \frac {a e^{3} x}{d^{4}} + \frac {b x^{4} \log {\left (c x \right )}}{4 d} - \frac {b x^{4}}{16 d} - \frac {b e x^{3} \log {\left (c x \right )}}{3 d^{2}} + \frac {b e x^{3}}{9 d^{2}} + \frac {b e^{2} x^{2} \log {\left (c x \right )}}{2 d^{3}} - \frac {b e^{2} x^{2}}{4 d^{3}} - \frac {b e^{4} \left (\begin {cases} \frac {x}{e} & \text {for}\: d = 0 \\\frac {\begin {cases} - \operatorname {Li}_{2}\left (\frac {d x e^{i \pi }}{e}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \wedge \left |{x}\right | < 1 \\\log {\left (e \right )} \log {\left (x \right )} - \operatorname {Li}_{2}\left (\frac {d x e^{i \pi }}{e}\right ) & \text {for}\: \left |{x}\right | < 1 \\- \log {\left (e \right )} \log {\left (\frac {1}{x} \right )} - \operatorname {Li}_{2}\left (\frac {d x e^{i \pi }}{e}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\left (e \right )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\left (e \right )} - \operatorname {Li}_{2}\left (\frac {d x e^{i \pi }}{e}\right ) & \text {otherwise} \end {cases}}{d} & \text {otherwise} \end {cases}\right )}{d^{4}} + \frac {b e^{4} \left (\begin {cases} \frac {x}{e} & \text {for}\: d = 0 \\\frac {\log {\left (d x + e \right )}}{d} & \text {otherwise} \end {cases}\right ) \log {\left (c x \right )}}{d^{4}} - \frac {b e^{3} x \log {\left (c x \right )}}{d^{4}} + \frac {b e^{3} x}{d^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*ln(c*x))/(d+e/x),x)

[Out]

a*x**4/(4*d) - a*e*x**3/(3*d**2) + a*e**2*x**2/(2*d**3) + a*e**4*Piecewise((x/e, Eq(d, 0)), (log(d*x + e)/d, T
rue))/d**4 - a*e**3*x/d**4 + b*x**4*log(c*x)/(4*d) - b*x**4/(16*d) - b*e*x**3*log(c*x)/(3*d**2) + b*e*x**3/(9*
d**2) + b*e**2*x**2*log(c*x)/(2*d**3) - b*e**2*x**2/(4*d**3) - b*e**4*Piecewise((x/e, Eq(d, 0)), (Piecewise((-
polylog(2, d*x*exp_polar(I*pi)/e), (Abs(x) < 1) & (1/Abs(x) < 1)), (log(e)*log(x) - polylog(2, d*x*exp_polar(I
*pi)/e), Abs(x) < 1), (-log(e)*log(1/x) - polylog(2, d*x*exp_polar(I*pi)/e), 1/Abs(x) < 1), (-meijerg(((), (1,
 1)), ((0, 0), ()), x)*log(e) + meijerg(((1, 1), ()), ((), (0, 0)), x)*log(e) - polylog(2, d*x*exp_polar(I*pi)
/e), True))/d, True))/d**4 + b*e**4*Piecewise((x/e, Eq(d, 0)), (log(d*x + e)/d, True))*log(c*x)/d**4 - b*e**3*
x*log(c*x)/d**4 + b*e**3*x/d**4

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*log(c*x))/(d+e/x),x, algorithm="giac")

[Out]

integrate((b*log(c*x) + a)*x^3/(d + e/x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3\,\left (a+b\,\ln \left (c\,x\right )\right )}{d+\frac {e}{x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*log(c*x)))/(d + e/x),x)

[Out]

int((x^3*(a + b*log(c*x)))/(d + e/x), x)

________________________________________________________________________________________